

COMPLEX PROJECTS REQUIRE RESOLVE **THRASHER'S GOT IT**

WEST LIBERTY UNIVERSITY OHIO COUNTY, WEST VIRGINIA

WEST LIBERTY UNIVERSITY – APPALACHIAN AQUATIC CONSERVATION CENTER

ADDENDUM #2

JULY 12, 2023

THRASHER PROJECT #060-10238

TO WHOM IT MAY CONCERN:

A Pre-Bid Conference was held on Wednesday, June 14, 2023, on the above-referenced project. The following are clarifications and responses to questions posed by contractors for the above reference project.

A. <u>GENERAL</u>

- 1. The Bid Date has been extended to Wednesday, July 26, 2023, at 10:00 in 315 Shaw Hall.
- 2. Storage room 108 to have epoxy flooring.
- 3. Build America/Buy America requirements are in place for this project.
- 4. Davis Bacon wages are not required on this project.
- 5. No local building permit is required.
- 6. Contractor will be required to pay for background checks of employees working on this project.
- 7. The contractor site superintendent will be required to sign in at the maintenance shop daily.
- 8. On campus parking permits must be acquired from the university. There is no cost for this.
- 9. The walls of the existing drink station (shown on revised floor plan) are to be extended to the ceiling. Column wrap can remain, but the existing paneling is to be removed and replaced with a similar matching product.
- 10. The existing geothermal piping and well field may be encountered during excavation. Any existing horizontal piping and grout casing found within the building footprint is to be removed. Any piping that conflicts with new utility trenching is to be removed. Any vertical well piping and grout casing found underneath the building footings is to be removed to a depth of 4' below bottom of footing and trench filled with crusher run up to footing bearing depth. Any wells not in conflict with building footings can remain in place. A drawing is attached showing the approximate location of the existing geothermal piping.

B. <u>SPECIFICATIONS</u>

1. New specification sections have been added. See questions 21 & 22 below.

C. <u>DRAWINGS</u>

- 1. A revised floor plan drawing is included,
- 2. A site plan drawing is included.

3. **QUESTIONS AND RESPONSES**

Question 1. Has any elevations been determined for the new building vs existing? **Answer 1**. Please see the attached site plan showing the finished floor elevation of the new building.

Question 2. Drawings call for aluminum storefront windows but there is a vinyl window specification. Please clarify.

Answer 2. The specifications are correct. Windows are to be vinyl.

Question 3. Note 1 on P3.00 calls for storm line to be run to nearest existing storm water line and connect. What are we to bid for lengths?

Answer 3. Please see the attached site plan showing the storm water layout and lengths.

Question 4. Existing hardwood floor that is being demoed by owner appears to be recessed from "bar" area and have $1 \frac{1}{2}$ " furring beneath. Will owner be demoing sub furring as well? Is this in the entire area? Will this only be infilled if alternate #1 is accepted? What are we to infill ~1 $\frac{1}{2}$ " recessed floor with?

Answer 4. The Owner will be demolishing all existing hardwood floor & furring. The area where the hardwood was, shall be filled and leveled with self-leveling concrete topping such as Ardex K 520 or similar with manufacturer recommended aggregate to match the existing concrete "bar" floor height. This area shall be infilled whether alternate #1 is accepted or not so the leveler shall be finished/polished in the event it is let exposed. The bar floor shall have a thin coating applied over top as well to provide a consistent floor finish in this room

Question 5. Is the elevated stage being demoed by owner?

Answer 5. GC to include cost for demolition of the existing elevated stage as well as the existing casework, shelving and beer taps on the wall of the former bar area. Walls to be patched.

Question 6. Do you have a physical address or coordinates for this project? Needed to establish haul rates to the project. **Answer 6.** Physical Address is 260 Roadworthy Drive, West Liberty, WV 26074.

Question 7. New building appears to be set back from existing structure approximately 18', the slope of the hill is approximately 14'. With the 4' sidewalk behind the new structure how are we dealing with the hillside and trees? Is there a site drawing showing new vs existing grade plan?

Answer 7. Please see the attached site plan showing the actual building location.

Question 8. Are we to patch asphalt up to new construction? **Answer 8**. Yes. Asphalt is to be patched up to new concrete sidewalk in front of the lab

building and anywhere trenches are excavated for underground utilites

Question 9. Are we demoing parking lot light pole or relocating? **Answer 9.** Parking lot light pole and associated base, conduit and wiring is to be demolished.

Question 10. Has the complete Spec Book been finalized and issued, on PBX it appears that The Specs stop at Division 12, where can I find the mechanicals? **Answer 10**. The MEP Specifications are on the drawings.

Question 11. Will PBX be updated, or do we need to pay to get on the plan holder's list on this one?

Answer 11. Any interested Bidder must purchase plans and specifications from our website.

Question 12. Is there a specification for the canopies? – I see BOD is Mapes Lumishade. Need finish, fascia, etc.

Answer 12. Finish is to be clear anodized and fascia is to be the standard 8" extruded J style (minimum .125 aluminum)

Question 13. There is a note to install 2x6 FTR to CMU for wall mounted items. Could you provide information on this – Is there multiple rows or just one 2x6, what is layout of items for blocking?

Answer 13. Contractor to plan for 2 horizontal rows of blocking that are each 10' in length (20' total). These are to be located along walls of lab 1 & 2 where the casework is shown (10 locations). Contractor to assume 200 LF total of 2x6 wood blocking.

Question 14. Detail 2/A5.01 calls for 8" foam insulated CMU and specification 042000 call for loose fill insulation - Perlite. Please clarify? **Answer 14.** Foam Insulation is to be used.

Question 15. Please confirm that the existing wood flooring and sleepers are to be removed.

Answer 15. These are being removed by the Owner.

Question 16. Please confirm that a cementitious material would be required to raise the elevation to match the existing elevation of the original concrete floor at the bar. What manufacturer and product would be utilized for the topping?

Answer 16. A self-leveling concrete topping such as Ardex K 520 or similar with manufacturer recommended aggregate is to be used to raise the floor of classroom 109 and storage 108 to match the bar floor height. Contractor to assume 2" thick for the purposes of this bid.

Question 17. Please confirm that the existing built in kitchen refrigeration equipment is to remain as is and is not part of this contract.

Answer 17. All existing built in kitchen equipment, freezers and coolers are to remain as is.

Question 18. Could you provide the brand of the existing MDS panel? Appears to be calling for a few new breakers but no manufactures or type of breaker/panel. **Answer 18.** The brand of the existing MDS panel is Siemens.

Question 19. On Sheet A6.01 windows are shown as hung and the spec book calls for vinyl windows. The details on the drawings show aluminum storefront. Please clarify. **Answer 19.** Vinyl windows are to be used.

Question 20. Is ¹/₄" clear tempered glass acceptable to use at the interior doors? **Answer 20.** Yes.

Question 21. Where can Specifications for Division 03 be found? Is the info on the drawings sufficient?

Answer 21. Specification section 033000 is included as part of this addendum.

Question 22. Where can the specifications for 31,32, & 33 be found? Is a site and civil plan missing?

Answer 22. Specification sections 311000, 312000, 312319, 321216, 321313 are included.

Question 23. Can the Bid Date be Extended due to the missing information? We have several subcontractors declining work due to busy schedules. Adding just one extra week or even two would help alleviate pressure in scheduling and allow us to obtain much more competitive bids.

Answer 23. Yes, to Wednesday July 26, 2023, at 10:00 in 315 Shaw Hall.

4. <u>CLARIFICATIONS</u>

None on this Addendum.

If you have any questions or comments, please feel free to contact me at your earliest convenience. As a reminder, **Bids will be received until 10:00 a.m. on Wednesday, July 26, 2023**, at West Liberty University Purchasing Office located at, 315 Shaw Hall on the Campus of West Liberty University, 208 University Drive, West Liberty, WV 26074. Good luck to everyone and thank you for your interest in the project.

ADDENDUM #2 June 12, 2023 Page 5 of 5

Sincerely,

THE THRASHER GROUP, INC.

Craig M. Baker Project Manager

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 GENERAL

1.1 SECTION INCLUDES

- A. Concrete formwork.
- B. Floors and slabs on grade.
- C. Concrete foundations and anchor bolts.
- D. Concrete reinforcement.
- E. Joint devices associated with concrete work.
- F. Miscellaneous concrete elements, including equipment pads, light pole bases, flagpole bases, and exterior slabs on grade.
- G. Concrete curing.

1.2 REFERENCE STANDARDS

- A. ACI 211.1 Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete; 1991 (Reapproved 2009).
- B. ACI 301 Specifications for Structural Concrete; 2016.
- C. ACI 302.1R Guide for Concrete Floor and Slab Construction; 2004 (Errata 2007).
- D. ACI 304R Guide for Measuring, Mixing, Transporting, and Placing Concrete; 2000.
- E. ACI 305R Guide to Hot Weather Concreting; 2010.
- F. ACI 306R Cold Weather Concreting; 2010.
- G. ACI 308R Guide to Curing Concrete; 2001 (Reapproved 2008).
- H. ACI 318 Building Code Requirements for Structural Concrete and Commentary; 2014 (Errata 2016).
- I. ACI 347R Guide to Formwork for Concrete; 2014.
- J. ASTM A615/A615M Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement; 2016.
- K. ASTM A1064/A1064M Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete; 2017.

- L. ASTM C1602/C1602M Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete; 2012.
- M. ASTM C33/C33M Standard Specification for Concrete Aggregates; 2016.
- N. ASTM C39/C39M Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; 2016b.
- O. ASTM C94/C94M Standard Specification for Ready-Mixed Concrete; 2016a.
- P. ASTM C143/C143M Standard Test Method for Slump of Hydraulic-Cement Concrete; 2015a.
- Q. ASTM C150/C150M Standard Specification for Portland Cement; 2016.
- R. ASTM C171 Standard Specification for Sheet Materials for Curing Concrete; 2016.
- S. ASTM C173/C173M Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method; 2016.
- T. ASTM C260/C260M Standard Specification for Air-Entraining Admixtures for Concrete; 2010a (Reapproved 2016).
- U. ASTM C309 Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete; 2011.
- V. ASTM C494/C494M Standard Specification for Chemical Admixtures for Concrete; 2016.
- W. ASTM C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; 2015.
- X. ASTM C685/C685M Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing; 2014.
- Y. ASTM C881/C881M Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete; 2015.
- Z. ASTM C1059/C1059M Standard Specification for Latex Agents for Bonding Fresh to Hardened Concrete; 2013.
- AA. ASTM C1107/C1107M Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Nonshrink); 2014a.
- AB. ASTM C1602/C1602M Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete; 2012.
- AC. ASTM D994/D994M Standard Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type); 2011 (Reapproved 2016).
- AD. ASTM D1751 Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types); 2004 (Reapproved 2013).

- AE. ASTM E1643 Standard Practice for Selection, Design, Installation and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs; 2011.
- AF. ASTM E1745 Standard Specification for Plastic Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs; 2011.

1.3 SUBMITTALS

- A. See Section 013000 Administrative Requirements, for submittal procedures.
- B. Product Data: Submit manufacturers' data on manufactured products showing compliance with specified requirements and installation instructions.
 - 1. For curing compounds, provide data on method of removal in the event of incompatibility with floor covering adhesives.
- C. Mix Design: Submit proposed concrete mix design.
 - 1. Indicate proposed mix design complies with requirements of ACI 301, Section 4 Concrete Mixtures.
 - 2. Indicate proposed mix design complies with requirements of ACI 318, Chapter 5 Concrete Quality, Mixing and Placing.
- D. Test Reports: Submit report for each test or series of tests specified.
- E. Project Record Documents: Accurately record actual locations of embedded utilities and components that will be concealed from view upon completion of concrete work.

1.4 QUALITY ASSURANCE

- A. Perform work of this section in accordance with ACI 301 and ACI 318.
- B. Follow recommendations of ACI 305R when concreting during hot weather.
- C. Follow recommendations of ACI 306R when concreting during cold weather.

PART 2 PRODUCTS

2.1 FORMWORK

- A. Form Materials: Contractor's choice of standard products with sufficient strength to withstand hydrostatic head without distortion in excess of permitted tolerances.
 - 1. Form Facing for Exposed Finish Concrete: Contractor's choice of materials that will provide smooth, stain-free final appearance.
 - 2. Earth Cuts: Side forms of footings may be omitted and concrete placed directly against excavation only when requested by the Contractor and accepted by the Architect/Engineer. When omission of forms is accepted, provide additional concrete 2" on each side of the minimum design profiles and dimensions shown. Natural rock formations that maintain a stable vertical edge may be used as side forms.

- 3. Form Coating: Release agent that will not adversely affect concrete or interfere with application of coatings.
- 4. Form Ties: Cone snap type that will leave no metal within 1-1/2 inches of concrete surface.

2.2 REINFORCEMENT MATERIALS

- A. Reinforcing Steel: ASTM A615/A615M, Grade 60 (60,000 psi).
 1. Type: Deformed billet-steel bars.
- B. Steel Welded Wire Reinforcement (WWR): Galvanized, plain type, ASTM A1064/A1064M.
 1. Form: Flat Sheets.
- C. Reinforcement Accessories:
 - 1. Chairs, Bolsters, Bar Supports, Spacers: Sized and shaped for adequate support of reinforcement during concrete placement.
 - 2. Provide stainless steel, galvanized, plastic, or plastic coated steel components for placement within 1-1/2 inches of weathering surfaces.

2.3 CONCRETE MATERIALS

- A. Cement: ASTM C150/C150M, Type I Normal Portland type.
 1. Acquire cement for entire project from same source.
- B. Fine and Coarse Aggregates: ASTM C33/C33M.
 1. Acquire aggregates for entire project from same source.
- C. Fly Ash: ASTM C618, Class C or F.
- D. Water: ASTM C1602/C1602M; clean, potable, and not detrimental to concrete.

2.4 ADMIXTURES

- A. Do not use chemicals that will result in soluble chloride ions in excess of 0.1 percent by weight of cement.
- B. Air Entrainment Admixture: ASTM C260/C260M.
- C. Water Reducing and Accelerating Admixture: ASTM C494/C494M Type E.
- D. Water Reducing and Retarding Admixture: ASTM C494/C494M Type D.
- E. Accelerating Admixture: ASTM C494/C494M Type C.

2.5 ACCESSORY MATERIALS

A. Underslab Vapor Retarder: Multi-layer, fabric-, cord-, grid-, or aluminum-reinforced polyethylene or equivalent, complying with ASTM E1745, Class A; stated by manufacturer as

suitable for installation in contact with soil or granular fill under concrete slabs. The use of single ply polyethylene is prohibited. Minimum 10 mil thickness.

- 1. Installation: Comply with ASTM E1643.
- 2. Accessory Products: Vapor retarder manufacturer's recommended tape, adhesive, mastic, prefabricated boots, etc., for sealing seams and penetrations.

2.6 BONDING AND JOINTING PRODUCTS

- A. Latex Bonding Agent: Non-redispersable acrylic latex, complying with ASTM C1059/C1059M, Type II.
 - 1. Manufacturers:
 - a. Kaufman Products Inc; SureBond: www.kaufmanproducts.net/#sle.
 - b. Kaufman Products Inc; SureWeld: www.kaufmanproducts.net/#sle.
 - c. SpecChem, LLC; Strong Bond Acrylic Bonder: www.specchemllc.com/#sle.
 - d. W. R. Meadows, Inc; ACRY-LOK-: www.wrmeadows.com/#sle.
 - e. Substitutions: See Section 016000 Product Requirements.
- B. Epoxy Bonding System:
 - 1. Complying with ASTM C881/C881M and of Type required for specific application.
 - 2. Manufacturers:
 - a. Adhesives Technology Corporation; Crackbond SLV-302, Crackbond LR-321, Crackbond LR-321 LPL, Ultrabond 2100 LPL, Ultrabond 2100, Ultrabond 1, Ultrabond 2, or Ultrabond HS200: www.atcepoxy.com/#sle.
 - b. Dayton Superior Corporation; _____: www.daytonsuperior.com/#sle.
 - c. Kaufman Products Inc; SurePoxy HM EPL: www.kaufmanproducts.net/#sle.
 - d. Kaufman Products Inc; SurePoxy HM Class B: www.kaufmanproducts.net/#sle.
 - e. SpecChem, LLC; SpecPoxy 1000, SpecPoxy 2000, SpecPoxy 3000, or SpecPoxy 3000FS: www.specchemllc.com/#sle.
 - f. W. R. Meadows, Inc; Rezi-Weld Gel Paste, Rezi-Weld Gel Paste State, Rezi-Weld 1000: www.wrmeadows.com/#sle.
 - g. Substitutions: See Section 016000 Product Requirements.
- C. Slab Isolation Joint Filler: 1/2 inch thick, height equal to slab thickness, with removable top section that will form 1/2 inch deep sealant pocket after removal.
 - 1. Material: ASTM D1751, cellulose fiber.
 - 2. Manufacturers:
 - a. Nomaco, Inc; Nomaflex Expansion Joint Filler with Void Cap Option: www.nomaco.com/#sle.
 - b. W. R. Meadows, Inc; Fiber Expansion Joint Filler with Snap-Cap: www.wrmeadows.com/#sle.
 - c. Substitutions: See Section 016000 Product Requirements.
- D. Slab Construction Joint Devices: Combination keyed joint form and screed, galvanized steel, with rectangular or round knockout holes for conduit or rebar to pass through joint form at 6 inches on center; ribbed steel stakes for setting.
 - 1. Provide removable plastic cap strip that forms wedge-shaped joint for sealant installation.
 - 2. Height: To suit slab thickness.

060-10238 ADDED: Addendum 2 July 12, 2023

2.7 CURING MATERIALS

- A. Evaporation Reducer: Liquid thin-film-forming compound that reduces rapid moisture loss caused by high temperature, low humidity, and high winds; intended for application immediately after concrete placement.
 - 1. Manufacturers:
 - a. Dayton Superior Corporation: www.daytonsuperior.com/#sle.
 - b. Kaufman Products Inc; VaporAid: www.kaufmanproducts.net/#sle.
 - c. SpecChem, LLC; SpecFilm Concentrate or SpecFilm: www.specchemllc.com/#sle.
 - d. W. R. Meadows, Inc ; Evapre or Evapre-RTU: www.wrmeadows.com/#sle.
 - e. Substitutions: See Section 016000 Product Requirements.
- B. Curing Agent, Water-Cure Equivalent Type: Clear, water-based, non-film-forming, liquidwater cure replacement agent.
 - 1. Compressive Strength of Treated Concrete: Equal to or greater than strength after 28-day water cure when tested according to ASTM C39/C39M.
- C. Curing Compound, Non-dissipating: Liquid, membrane-forming, clear, non-yellowing acrylic; complying with ASTM C309.

2.8 CONCRETE MIX DESIGN

- A. Proportioning Normal Weight Concrete: Comply with ACI 211.1 recommendations.
 - 1. Replace as much Portland cement as possible with fly ash, ground granulated blast furnace slag, silica fume, or rice hull ash as is consistent with ACI recommendations.
- B. Concrete Strength: Establish required average strength for each type of concrete on the basis of field experience or trial mixtures, as specified in ACI 301.
 - 1. For trial mixtures method, employ independent testing agency acceptable to Architect for preparing and reporting proposed mix designs.
- C. Admixtures: Add acceptable admixtures as recommended in ACI 211.1 and at rates recommended or required by manufacturer.
- D. Normal Weight Concrete:
 - 1. Compressive Strength, when tested in accordance with ASTM C39/C39M at 28 days: 4,000 pounds per square inch.
 - 2. Fly Ash Content: Maximum 15 percent of cementitious materials by weight.
 - 3. Water-Cement Ratio: Maximum 40 percent by weight.
 - 4. Total Air Content: 4 percent, determined in accordance with ASTM C173/C173M.
 - 5. Maximum Slump: 3 inches for concrete floors, 4" for all other concrete.
 - 6. Maximum Aggregate Size: 3/4 inch.

2.9 MIXING

A. On Project Site: Mix in drum type batch mixer, complying with ASTM C685/C685M. Mix each batch not less than 1-1/2 minutes and not more than 5 minutes.

B. Adding Water: If concrete arrives on-site with slump less than suitable for placement, do not add water that exceeds the maximum water-cement ratio or exceeds the maximum permissible slump.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify lines, levels, and dimensions before proceeding with work of this section.

3.2 PREPARATION

- A. Formwork: Comply with requirements of ACI 301. Design and fabricate forms to support all applied loads until concrete is cured, and for easy removal without damage to concrete.
- B. Verify that forms are clean and free of rust before applying release agent.
- C. Coordinate placement of embedded items with erection of concrete formwork and placement of form accessories.
- D. Where new concrete is to be bonded to previously placed concrete, prepare existing surface by cleaning and applying bonding agent in according to bonding agent manufacturer's instructions.
 - 1. Use epoxy bonding system for bonding to damp surfaces, for structural load-bearing applications, and where curing under humid conditions is required.
 - 2. Use latex bonding agent only for non-load-bearing applications.
- E. In locations where new concrete is doweled to existing work, drill holes in existing concrete, insert steel dowels and pack solid with non-shrink grout.
- F. Interior Slabs on Grade: Install vapor retarder under interior slabs on grade. Lap joints minimum 6 inches. Seal joints, seams and penetrations watertight with manufacturer's recommended products and follow manufacturer's written instructions. Repair damaged vapor retarder before covering.
 - 1. Vapor Retarder Over Granular Fill: Install compactible granular fill before placing vapor retarder as indicated on drawings. Do not use sand.

3.3 INSTALLING REINFORCEMENT AND OTHER EMBEDDED ITEMS

- A. Comply with requirements of ACI 301. Clean reinforcement of loose rust and mill scale, and accurately position, support, and secure in place to achieve not less than minimum concrete coverage required for protection.
- B. Install welded wire reinforcement in maximum possible lengths, and offset end laps in both directions. Splice laps with tie wire.
- C. Verify that anchors, seats, plates, reinforcement and other items to be cast into concrete are accurately placed, positioned securely, and will not interfere with concrete placement.

3.4 PLACING CONCRETE

- A. Place concrete in accordance with ACI 304R.
- B. Place concrete for floor slabs in accordance with ACI 302.1R.
- C. Maintain records of concrete placement. Record date, location, quantity, air temperature, and test samples taken.
- D. Ensure reinforcement, inserts, waterstops, embedded parts, and formed construction joint devices will not be disturbed during concrete placement.
- E. Finish floors level and flat, unless otherwise indicated, within the tolerances specified below.

3.5 SLAB JOINTING

- A. Locate joints as indicated on drawings.
- B. Anchor joint fillers and devices to prevent movement during concrete placement.
- C. Isolation Joints: Use preformed joint filler with removable top section for joint sealant, total height equal to thickness of slab, set flush with top of slab.
- D. Saw Cut Contraction Joints: Saw cut joints before concrete begins to cool, within 4 to 12 hours after placing; use 3/16 inch thick blade and cut at least 1 inch deep but not less than one quarter (1/4) the depth of the slab.
- E. Construction Joints: Where not otherwise indicated, use metal combination screed and key form, with removable top section for joint sealant.

3.6 FLOOR FLATNESS AND LEVELNESS TOLERANCES

- A. Maximum Variation of Surface Flatness:
 - 1. Exposed Concrete Floors: 1/4 inch in 10 feet.
 - 2. Under Seamless Resilient Flooring: 1/4 inch in 10 feet.
 - 3. Under Carpeting: 1/4 inch in 10 feet.
- B. Correct the slab surface if tolerances are less than specified.
- C. Correct defects by grinding or by removal and replacement of the defective work. Areas requiring corrective work will be identified. Re-measure corrected areas by the same process.

3.7 CONCRETE FINISHING

- A. Repair surface defects, including tie holes, immediately after removing formwork.
- B. Unexposed Form Finish: Rub down or chip off fins or other raised areas 1/4 inch or more in height.

- C. Concrete Slabs: Finish to requirements of ACI 302.1R, and as follows:
 - 1. Surfaces to Receive Thick Floor Coverings: "Wood float" as described in ACI 302.1R; thick floor coverings include quarry tile, ceramic tile, and Portland cement terrazzo with full bed setting system.
 - 2. Surfaces to Receive Thin Floor Coverings: "Steel trowel" as described in ACI 302.1R; thin floor coverings include carpeting, resilient flooring, seamless flooring, resinous matrix terrazzo, thin set quarry tile, and thin set ceramic tile.
 - 3. Other Surfaces to Be Left Exposed: Trowel as described in ACI 302.1R, minimizing burnish marks and other appearance defects.
- D. In areas with floor drains, maintain floor elevation at walls; pitch surfaces uniformly to drains at 1:100 nominal.

3.8 CURING AND PROTECTION

- A. Comply with requirements of ACI 308R. Immediately after placement, protect concrete from premature drying, excessively hot or cold temperatures, and mechanical injury.
- B. Maintain concrete with minimal moisture loss at relatively constant temperature for period necessary for hydration of cement and hardening of concrete.
 - 1. Normal concrete: Not less than seven days.
- C. Surfaces Not in Contact with Forms:
 - 1. Slabs and Floors To Receive Adhesive-Applied Flooring: Curing compounds and other surface coatings are usually considered unacceptable by flooring and adhesive manufacturers. If such materials must be used, either obtain the approval of the flooring and adhesive manufacturers prior to use or remove the surface coating after curing to flooring manufacturer's satisfaction.
 - 2. Initial Curing: Start as soon as free water has disappeared and before surface is dry. Keep continuously moist for not less than three days by water ponding, water-saturated sand, water-fog spray, or saturated burlap.
 - 3. Final Curing: Begin after initial curing but before surface is dry.
 - a. Curing Compound: Apply in two coats at right angles, using application rate recommended by manufacturer.

3.9 FIELD QUALITY CONTROL

- A. An independent testing agency will perform field quality control tests, as specified in Section 014000 Quality Requirements.
- B. Provide free access to concrete operations at project site and cooperate with appointed firm.
- C. Submit proposed mix design of each class of concrete to inspection and testing firm for review prior to commencement of concrete operations.
- D. Tests of concrete and concrete materials may be performed at any time to ensure compliance with specified requirements.

- E. Compressive Strength Tests: ASTM C39/C39M, for each test, mold and cure three concrete test cylinders. Obtain test samples for every 100 cubic yards or less of each class of concrete placed.
- F. Take one additional test cylinder during cold weather concreting, cured on job site under same conditions as concrete it represents.
- G. Perform one slump test for each set of test cylinders taken, following procedures of ASTM C143/C143M.

3.10 DEFECTIVE CONCRETE

- A. Test Results: The testing agency shall report test results in writing to Architect and Contractor within 24 hours of test.
- B. Defective Concrete: Concrete not complying with required lines, details, dimensions, tolerances or specified requirements.
- C. Repair or replacement of defective concrete will be determined by the Architect. The cost of additional testing shall be borne by Contractor when defective concrete is identified.
- D. Do not patch, fill, touch-up, repair, or replace exposed concrete except upon express direction of Architect for each individual area.

3.11 **PROTECTION**

A. Do not permit traffic over unprotected concrete floor surface until fully cured. END OF SECTION

SECTION 311000 - SITE CLEARING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Protecting existing vegetation to remain.
 - 2. Removing existing vegetation.
 - 3. Clearing and grubbing.
 - 4. Stripping and stockpiling topsoil.
 - 5. Removing above- and below-grade site improvements.
 - 6. Disconnecting, capping, or sealing site utilities.
 - 7. Temporary erosion and sedimentation control.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 MATERIAL OWNERSHIP

A. Except for materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.4 FIELD CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed trafficways if required by Owner or authorities having jurisdiction.
- B. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.
- C. Do not commence site clearing operations until temporary erosion- and sedimentation-control measures are in place.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 "Earth Moving."
 - 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect and maintain benchmarks and survey control points from disturbance during construction.
- B. Protect existing site improvements to remain from damage during construction.
 - 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

- A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
- B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
- C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
- D. Remove erosion and sedimentation controls, and restore and stabilize areas disturbed during removal.

3.3 EXISTING UTILITIES

- A. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.
 - 1. Arrange with utility companies to shut off indicated utilities.

- B. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others, unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect not less than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.

3.4 CLEARING AND GRUBBING

- A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 - 1. Grind down stumps and remove roots larger than 3 inches in diameter, obstructions, and debris to a depth of 18 inches below exposed subgrade.
 - 2. Use only hand methods or air spade for grubbing within protection zones.
- B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 - 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.5 TOPSOIL STRIPPING

- A. Remove sod and grass before stripping topsoil.
- B. Strip topsoil to depth of 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.
- C. Stockpile topsoil away from edge of excavations without intermixing with subsoil or other materials. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.

3.6 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

3.7 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.
- B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials, and transport them to recycling facilities. Do not interfere with other Project work.

060-10238 ADDED: Addendum 2 July 12, 2023

END OF SECTION 311000

SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Excavating and filling for rough grading the Site.
 - 2. Preparing subgrades for slabs-on-grade, walks pavements, turf and grasses, and plants.
 - 3. Excavating and backfilling for buildings and structures.
 - 4. Subbase course for concrete walks and pavements.
 - 5. Subbase course and aggregate base course for asphalt paving.
 - 6. Excavating and backfilling trenches for utilities and pits for buried utility structures.

1.2 DEFINITIONS

- A. Backfill: Soil material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
- C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.
- F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 - 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 - 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.
- G. Fill: Soil materials used to raise existing grades.

- H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- I. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
- J. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.
- K. Utilities: On-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct pre-excavation conference at Project site.
- 1.4 INFORMATIONAL SUBMITTALS
 - A. Material test reports.

1.5 FIELD CONDITIONS

A. Utility Locator Service: Notify utility locator service for area where Project is located before beginning earth-moving operations.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D2487, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.
- C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D2487, or a combination of these groups.
 - 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

- D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 95 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.
- F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 90 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 12 percent passing a No. 200 (0.075-mm) sieve.
- G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; except with 100 percent passing a 1-inch (25-mm) sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.
- H. Drainage Course: Narrowly graded mixture of washed crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch (37.5-mm) sieve and zero to 5 percent passing a No. 8 (2.36-mm) sieve.

2.2 ACCESSORIES

- A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of the utility; colored to comply with local practice or requirements of authorities having jurisdiction.
- B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored to comply with local practice or requirements of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth-moving operations.
- B. Protect and maintain erosion and sedimentation controls during earth-moving operations.
- C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

060-10238 ADDED: Addendum 2 July 12, 2023

3.2 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.3 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch (25 mm). If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
 - 2. Pile Foundations: Stop excavations 6 to 12 inches (150 to 300 mm) above bottom of pile cap before piles are placed. After piles have been driven, remove loose and displaced material. Excavate to final grade, leaving solid base to receive concrete pile caps.
 - 3. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch (25 mm). Do not disturb bottom of excavations intended as bearing surfaces.

3.4 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.5 EXCAVATION FOR UTILITY TRENCHES

- A. Excavate trenches to indicated gradients, lines, depths, and elevations.
- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches (300 mm) higher than top of pipe or conduit unless otherwise indicated.
 - 1. Clearance: 12 inches (300 mm) each side of pipe or conduit.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. Excavate trenches 6 inches (150 mm) deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

3.6 SUBGRADE INSPECTION

- A. Proof-roll subgrade below the building slabs and pavements with a pneumatic-tired dump truck to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
- B. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.7 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi (17.2 MPa), may be used when approved by Architect.
 - 1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Architect.

3.8 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.9 UTILITY TRENCH BACKFILL

- A. Place backfill on subgrades free of mud, frost, snow, or ice.
- B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches (450 mm) of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 033000 "Cast-in-Place Concrete."
- D. Trenches under Roadways: Provide 4-inch- (100-mm-) thick, concrete-base slab support for piping or conduit less than 30 inches (750 mm) below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches (100 mm) of concrete

before backfilling or placing roadway subbase course. Concrete is specified in Section 033000 "Cast-in-Place Concrete."

- E. Initial Backfill: Place and compact initial backfill of subbase material, free of particles larger than 1 inch (25 mm) in any dimension, to a height of 12 inches (300 mm) over the pipe or conduit.
 - 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
- F. Final Backfill: Place and compact final backfill of satisfactory soil to final subgrade elevation.
- G. Warning Tape: Install warning tape directly above utilities, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.

3.10 SOIL FILL

- A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- B. Place and compact fill material in layers to required elevations as follows:
 - 1. Under grass and planted areas, use satisfactory soil material.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use engineered fill.
 - 4. Under building slabs, use engineered fill.
 - 5. Under footings and foundations, use engineered fill.

3.11 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 - 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.12 COMPACTION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches (200 mm) in loose depth for material compacted by heavy compaction equipment and not more than 4 inches (100 mm) in loose depth for material compacted by hand-operated tampers.

- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D1557:
 - 1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches (300 mm) of existing subgrade and each layer of backfill or fill soil material at 98 percent.
 - 2. Under walkways, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill soil material at 95 percent.
 - 3. Under turf or unpaved areas, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill soil material at 90 percent.
 - 4. For utility trenches, compact each layer of initial and final backfill soil material at 90 percent.

3.13 GRADING

- A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to elevations required to achieve indicated finish elevations, within the following subgrade tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1 inch (25 mm).
 - 2. Walks: Plus or minus 1 inch (25 mm).
 - 3. Pavements: Plus or minus 1/2 inch (13 mm).
- C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch (13 mm) when tested with a 10-foot (3-m) straightedge.

3.14 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

- A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:
 - 1. Shape subbase course and base course to required crown elevations and cross-slope grades.
 - 2. Place subbase course and base course that exceeds 6 inches (150 mm) in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick.
 - 3. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D1557.

3.15 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a qualified special inspector to perform inspections:
- B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.
- C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
- D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.
- E. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.16 **PROTECTION**

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.17 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 312000

060-10238 ADDED: Addendum 2 July 12, 2023

SECTION 312319 - DEWATERING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes construction dewatering.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 FIELD CONDITIONS

A. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Provide temporary grading to facilitate dewatering and control of surface water.
- B. Protect and maintain temporary erosion and sedimentation controls, which are specified in Section 015000 "Temporary Facilities and Controls," Section 311000 "Site Clearing," during dewatering operations.

3.2 INSTALLATION

- A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.
 - 1. Space well points or wells at intervals required to provide sufficient dewatering.
 - 2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.
- B. Place dewatering system into operation to lower water to specified levels before excavating below ground-water level.
- C. Provide standby equipment on-site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails.

3.3 OPERATION

- A. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.
- B. Operate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.
 - 1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.
 - 2. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.
 - 3. Maintain piezometric water level a minimum of 24 inches (600 mm) below bottom of excavation.
- C. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches (900 mm) below overlying construction.

3.4 FIELD QUALITY CONTROL

A. Survey-Work Benchmarks: Resurvey benchmarks regularly during dewatering and maintain an accurate log of surveyed elevations for comparison with original elevations. Promptly notify Architect if changes in elevations occur or if cracks, sags, or other damage is evident in adjacent construction.

END OF SECTION 312319

SECTION 321216 - ASPHALT PAVING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Hot-mix asphalt paving.
 - 2. Hot-mix asphalt overlay.
 - 3. Cold milling of existing asphalt pavement.
 - 4. Hot-mix asphalt patching.
 - 5. Asphalt curbs.

B. Related Requirements:

- 1. Section 312000 "Earth Moving" for subgrade preparation, fill material, separation geotextiles, unbound-aggregate subbase and base courses, and aggregate pavement shoulders.
- 2. Section 321313 "Concrete Paving" for concrete pavement and for separate concrete curbs, gutters, and driveway aprons.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

- A. Product Data:
 - 1. Herbicide.
- B. Hot-mix asphalt designs.

1.4 INFORMATIONAL SUBMITTALS

- A. Material Certificates: Include statement that mixes containing recycled materials will perform equal to mixes produced from all new materials.
 - 1. Aggregates.
 - 2. Asphalt binder.
 - 3. Tack coat.

1.5 QUALITY ASSURANCE

- A. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of WVDOH for asphalt paving work.
 - 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

PART 2 - PRODUCTS

2.1 AGGREGATES

- A. Coarse Aggregate: ASTM D692/D692M, sound; angular crushed stone, crushed gravel, or cured, crushed blast-furnace slag.
- B. Fine Aggregate: AASHTO M 29, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof.
- C. Mineral Filler: AASHTO M 17, rock or slag dust, hydraulic cement, or other inert material.

2.2 ASPHALT MATERIALS

- A. Asphalt Binder: AASHTO M 320 binder designation PG 64-22.
- B. Asphalt Cement: ASTM D3381/D3381M for viscosity-graded material.
- C. Tack Coat: AASHTO M 140 emulsified asphalt, or AASHTO M 208 cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.

2.3 AUXILIARY MATERIALS

- A. Recycled Materials for Hot-Mix Asphalt Mixes: not allowed.
- B. Herbicide: Commercial chemical for weed control, registered by the EPA, and not classified as "restricted use" for locations and conditions of application. Provide in granular, liquid, or wettable powder form.

2.4 MIXES

A. Hot-Mix Asphalt: Dense-graded, hot-laid, hot-mix asphalt plant mixes designed in accordance with WVDOH standards and complying with the following requirements:

PART 3 - EXECUTION

3.1 COLD MILLING

- A. Clean existing pavement surface of loose and deleterious material immediately before cold milling. Remove existing asphalt pavement by cold milling to grades and cross sections indicated.
 - 1. Mill to a depth of 2 inches (50 mm).
 - 2. Patch surface depressions deeper than 1 inch (25 mm) after milling, before wearing course is laid.

3.2 PATCHING

- A. Asphalt Pavement: Saw cut perimeter of patch and excavate existing pavement section to sound base. Excavate rectangular or trapezoidal patches, extending 12 inches (300 mm) into perimeter of adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Remove excavated material. Recompact existing unbound-aggregate base course to form new subgrade.
- B. Portland Cement Concrete Pavement: Break cracked slabs and roll as required to reseat concrete pieces firmly.
 - 1. Remove disintegrated or badly cracked pavement. Excavate rectangular or trapezoidal patches, extending into perimeter of adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Recompact existing unbound-aggregate base course to form new subgrade.
- C. Tack Coat: Before placing patch material, apply tack coat uniformly to vertical asphalt surfaces abutting the patch. Apply at a rate of 0.05 to 0.15 gal./sq. yd. (0.2 to 0.7 L/sq. m).
 - 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 - 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.
- D. Placing Patch Material: Fill excavated pavement areas with hot-mix asphalt base mix for full thickness of patch and, while still hot, compact flush with adjacent surface.

3.3 SURFACE PREPARATION

- A. Ensure that prepared subgrade is ready to receive paving. Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces.
- B. Herbicide Treatment: Apply herbicide in accordance with manufacturer's recommended rates and written application instructions. Apply to dry, prepared subgrade or surface of compacted-aggregate base before applying paving materials.

- 1. Mix herbicide with prime coat if formulated by manufacturer for that purpose.
- C. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd. (0.2 to 0.7 L/sq. m).
 - 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 - 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.4 HOT-MIX ASPHALT PLACEMENT

- A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand in areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.
 - 1. Place hot-mix asphalt base course and binder course in number of lifts and thicknesses indicated.
 - 2. Place hot-mix asphalt surface course in single lift.
 - 3. Spread mix at a minimum temperature of 250 deg F (121 deg C).
 - 4. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.
- B. Place paving in consecutive strips not less than 10 feet (3 m) wide unless infill edge strips of a lesser width are required.
- C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.5 JOINTS

- A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.
 - 1. Clean contact surfaces and apply tack coat to joints.
 - 2. Offset longitudinal joints, in successive courses, a minimum of 6 inches (150 mm).
 - 3. Offset transverse joints, in successive courses, a minimum of 24 inches (600 mm).
 - 4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method in accordance with AI MS-22, for both "Ending a Lane" and "Resumption of Paving Operations.

3.6 COMPACTION

- A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
 - 1. Complete compaction before mix temperature cools to 185 deg F (85 deg C).
- B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.
- C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:
 - 1. Average Density, Rice Test Method: 92 percent of reference maximum theoretical density in accordance with ASTM D2041/D2041M, but not less than 90 percent or greater than 96 percent.
- D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.
- E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.
- F. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.
- G. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.7 ASPHALT CURBS

- A. Construct hot-mix asphalt curbs over compacted pavement surfaces. Apply a light tack coat unless pavement surface is still tacky and free from dust. Spread hot-mix asphalt at a minimum temperature of 250 deg F (121 deg C).
 - 1. Hot-Mix Asphalt: Same as pavement surface-course mix.
- B. Place hot-mix asphalt to curb cross section indicated or, if not indicated, to local standard shapes, by machine or by hand in wood or metal forms. Tamp hand-placed materials and screed to smooth finish. Remove forms after hot-mix asphalt has cooled.

3.8 INSTALLATION TOLERANCES

A. Pavement Thickness: Compact each course to produce thickness indicated within the following tolerances:

- 1. Base Course and Binder Course: Plus or minus 1/2 inch (13 mm).
- 2. Surface Course: Plus 1/4 inch (6 mm), no minus.
- B. Pavement Surface Smoothness: Compact each course to produce surface smoothness within the following tolerances as determined by using a 10-foot (3-m) straightedge applied transversely or longitudinally to paved areas:
 - 1. Base Course and Binder Course: 1/4 inch (6 mm).
 - 2. Surface Course: 1/8 inch (3 mm).
 - 3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch (6 mm).

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Replace and compact hot-mix asphalt where core tests were taken.
- C. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

END OF SECTION 321216

SECTION 321313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes Concrete Paving.
 - 1. Driveways.
 - 2. Roadways.
 - 3. Parking lots.
 - 4. Curbs and gutters.
 - 5. Walks.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each type of product, ingredient, or admixture requiring color selection.
- C. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.3 QUALITY ASSURANCE

- A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing readymixed concrete products and that complies with ASTM C94/C94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").

1.4 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified independent testing agency to perform preconstruction testing on concrete paving mixtures.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 (ACI 301M) unless otherwise indicated.

2.2 STEEL REINFORCEMENT

- A. Plain-Steel Welded-Wire Reinforcement: ASTM A1064/A1064M, fabricated from as-drawn steel wire into flat sheets.
- B. Deformed-Steel Welded-Wire Reinforcement: ASTM A1064/A1064M, flat sheet.
- C. Reinforcing Bars: ASTM A615/A615M, Grade 60 (Grade 420); deformed.
- D. Joint Dowel Bars: ASTM A615/A615M, Grade 60 (Grade 420) plain-steel bars. Cut bars true to length with ends square and free of burrs.
- E. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded-wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified.

2.3 CONCRETE MATERIALS

- A. Cementitious Materials: Use the following cementitious materials, of same type, brand, and source throughout Project:
 - 1. Portland Cement: ASTM C150/C150M, gray portland cement Type II.
 - 2. Fly Ash: ASTM C618, Class C or Class F.
 - 3. Slag Cement: ASTM C989/C989M, Grade 100 or 120.
 - 4. Blended Hydraulic Cement: ASTM C595/C595M,
- B. Normal-Weight Aggregates: ASTM C33/C33M, uniformly graded. Provide aggregates from a single source.
- C. Air-Entraining Admixture: ASTM C260/C260M.
- D. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
- E. Water: Potable and complying with ASTM C94/C94M.

2.4 CURING MATERIALS

- A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) dry or cotton mats.
- B. Moisture-Retaining Cover: ASTM C171, polyethylene film or white burlap-polyethylene sheet.
- C. Water: Potable.
- D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C309, Type 1, Class B, dissipating.
- F. White, Waterborne, Membrane-Forming Curing Compound: ASTM C309, Type 2, Class B, dissipating.

2.5 RELATED MATERIALS

- A. Joint Fillers: ASTM D1751, asphalt-saturated cellulosic fiber or ASTM D1752, cork or self-expanding cork in preformed strips.
- B. Slip-Resistive Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of fused aluminum-oxide granules or crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials.

2.6 CONCRETE MIXTURES

- A. Prepare design mixtures, proportioned according to ACI 301 (ACI 301M), for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
- B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 - 1. Fly Ash or Pozzolan: 25 percent.
 - 2. Slag Cement: 50 percent.
 - 3. Combined Fly Ash or Pozzolan, and Slag Cement: 50 percent, with fly ash or pozzolan not exceeding 25 percent.
- C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 - 1. Air Content: 7 percent plus or minus 1-1/2 percent.
- D. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.

060-10238 ADDED: Addendum 2 July 12, 2023

- E. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than 1.0 lb/cu. yd. (0.60 kg/cu. m).
- F. Concrete Mixtures: Normal-weight concrete.
 - 1. Compressive Strength (28 Days): 4000 psi (27.6 MPa).
 - 2. Maximum W/C Ratio at Point of Placement: 0.50.
 - 3. Slump Limit: 4 inches (100 mm), plus or minus 1 inch (25 mm).

2.7 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C94/C94M and ASTM C1116/C1116M. Furnish batch certificates for each batch discharged and used in the Work.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

- A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
- B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT INSTALLATION

A. Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

3.5 JOINTS

- A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
- B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
- C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
- D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness:
- E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a [1/4-inch (6-mm)] radius. Repeat tooling of edges after applying surface finishes. Eliminate edging-tool marks on concrete surfaces.

3.6 CONCRETE PLACEMENT

- A. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
- B. Comply with ACI 301 (ACI 301M) requirements for measuring, mixing, transporting, and placing concrete.
- C. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
- D. Screed paving surface with a straightedge and strike off.
- E. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleedwater appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

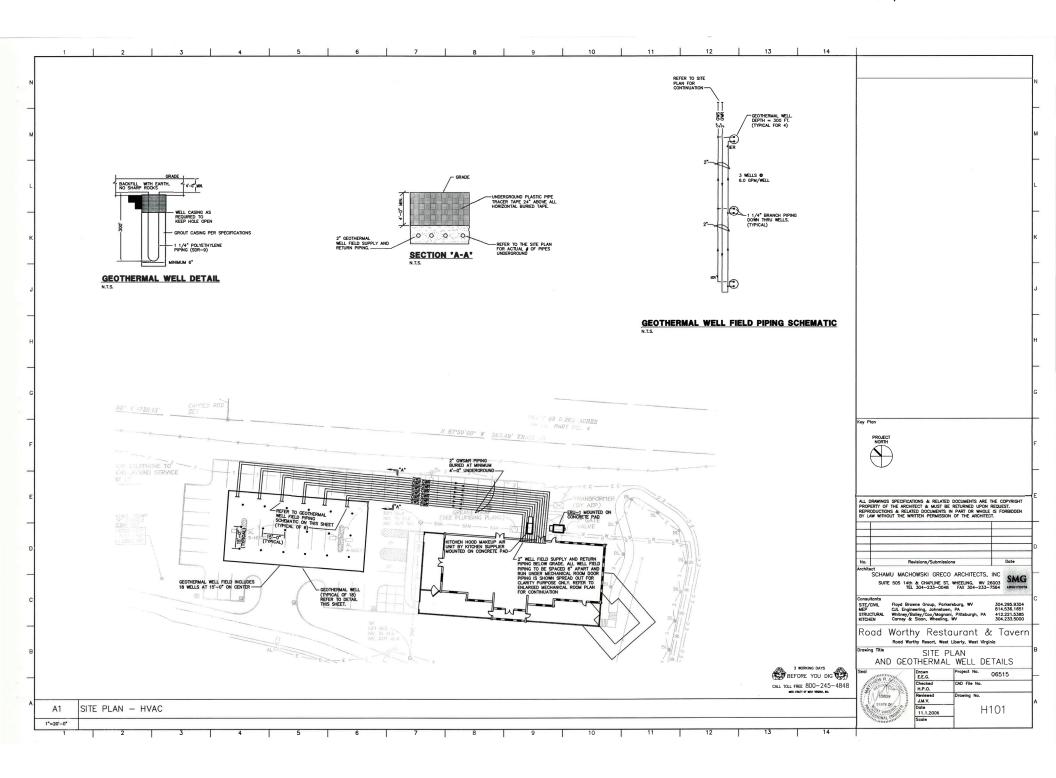
3.7 FLOAT FINISHING

- A. General: Do not add water to concrete surfaces during finishing operations.
- B. Float Finish: Begin the second floating operation when bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

- 1. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.
- 2. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface, perpendicular to line of traffic, to provide a uniform, fine-line texture.
- 3. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating floatfinished concrete surface 1/16 to 1/8 inch (1.6 to 3 mm) deep with a stiff-bristled broom, perpendicular to line of traffic.
- C. Slip-Resistive Aggregate Finish: Before final floating, spread slip-resistive aggregate finish on paving surface according to manufacturer's written instructions.
 - 1. Cure concrete with curing compound recommended by slip-resistive aggregate manufacturer. Apply curing compound immediately after final finishing.
 - 2. After curing, lightly work surface with a steel-wire brush or abrasive stone and water to expose nonslip aggregate.

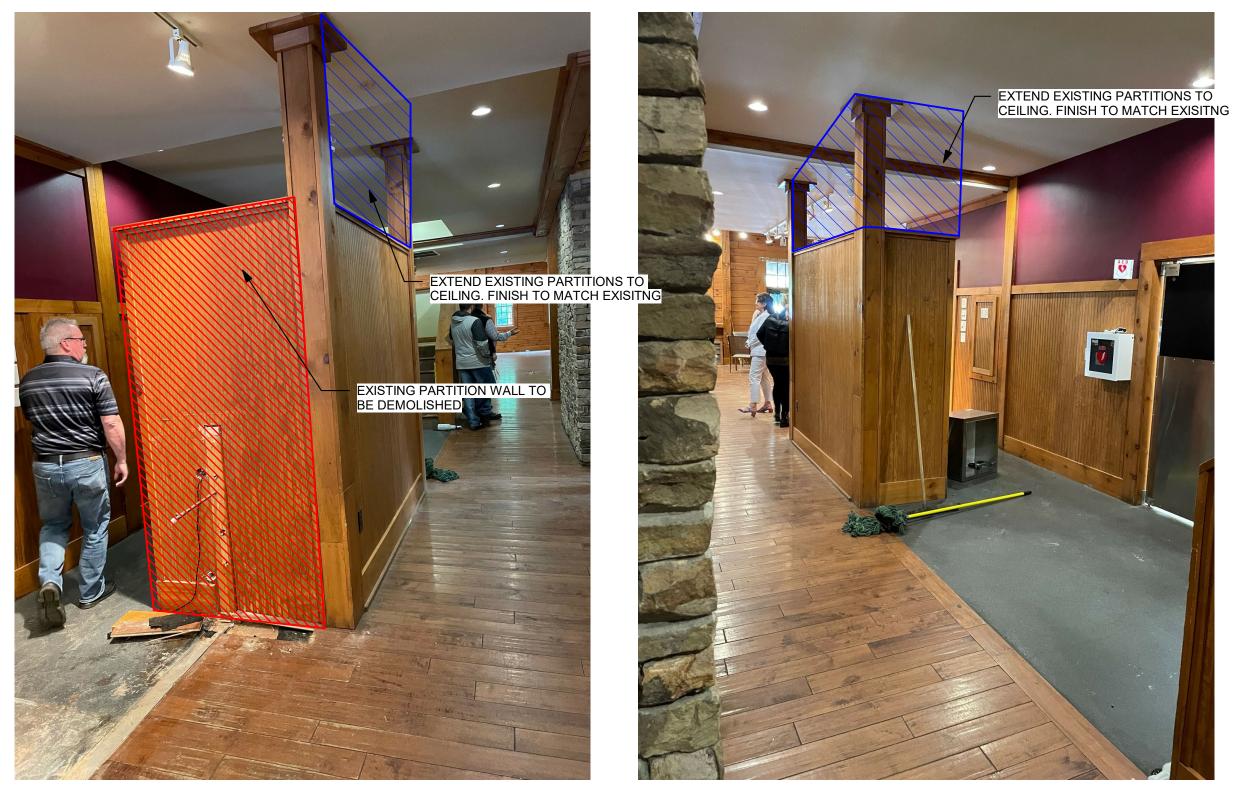
3.8 CONCRETE PROTECTION AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
- B. Comply with ACI 306.1 for cold-weather protection.
- C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
- D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.
- E. Curing Methods: Cure concrete by moisture curing moisture-retaining-cover curing curing compound or a combination of these.

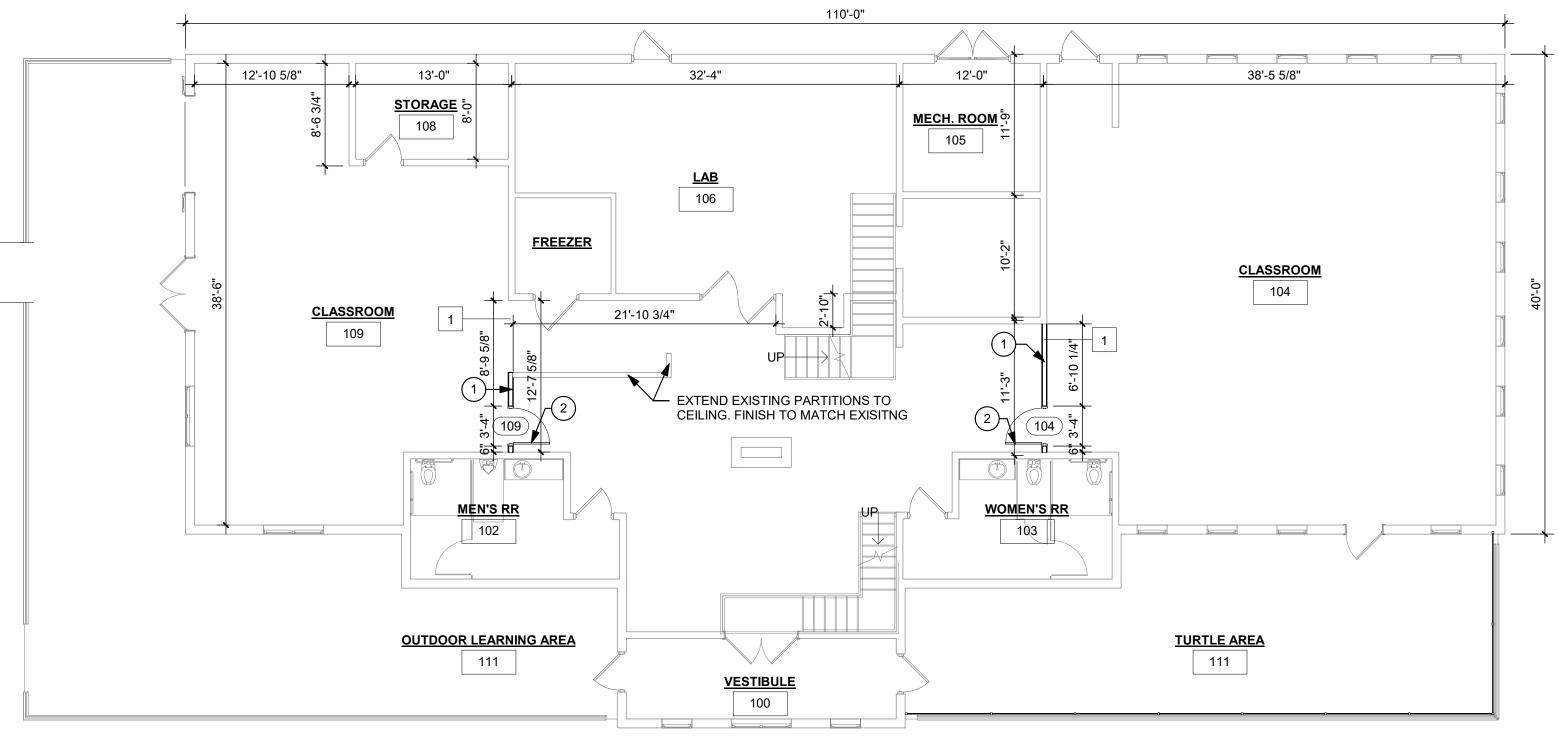

3.9 PAVING TOLERANCES

- A. Comply with tolerances in ACI 117 (ACI 117M) and as follows:
 - 1. Elevation: 3/4 inch (19 mm).
 - 2. Thickness: Plus 3/8 inch (10 mm), minus 1/4 inch (6 mm).
 - 3. Surface: Gap below 10-feet- (3-m-) long; unleveled straightedge not to exceed 1/2 inch (13 mm).
 - 4. Joint Spacing: 3 inches (75 mm).
 - 5. Contraction Joint Depth: Plus 1/4 inch (6 mm), no minus.
 - 6. Joint Width: Plus 1/8 inch (3 mm), no minus.

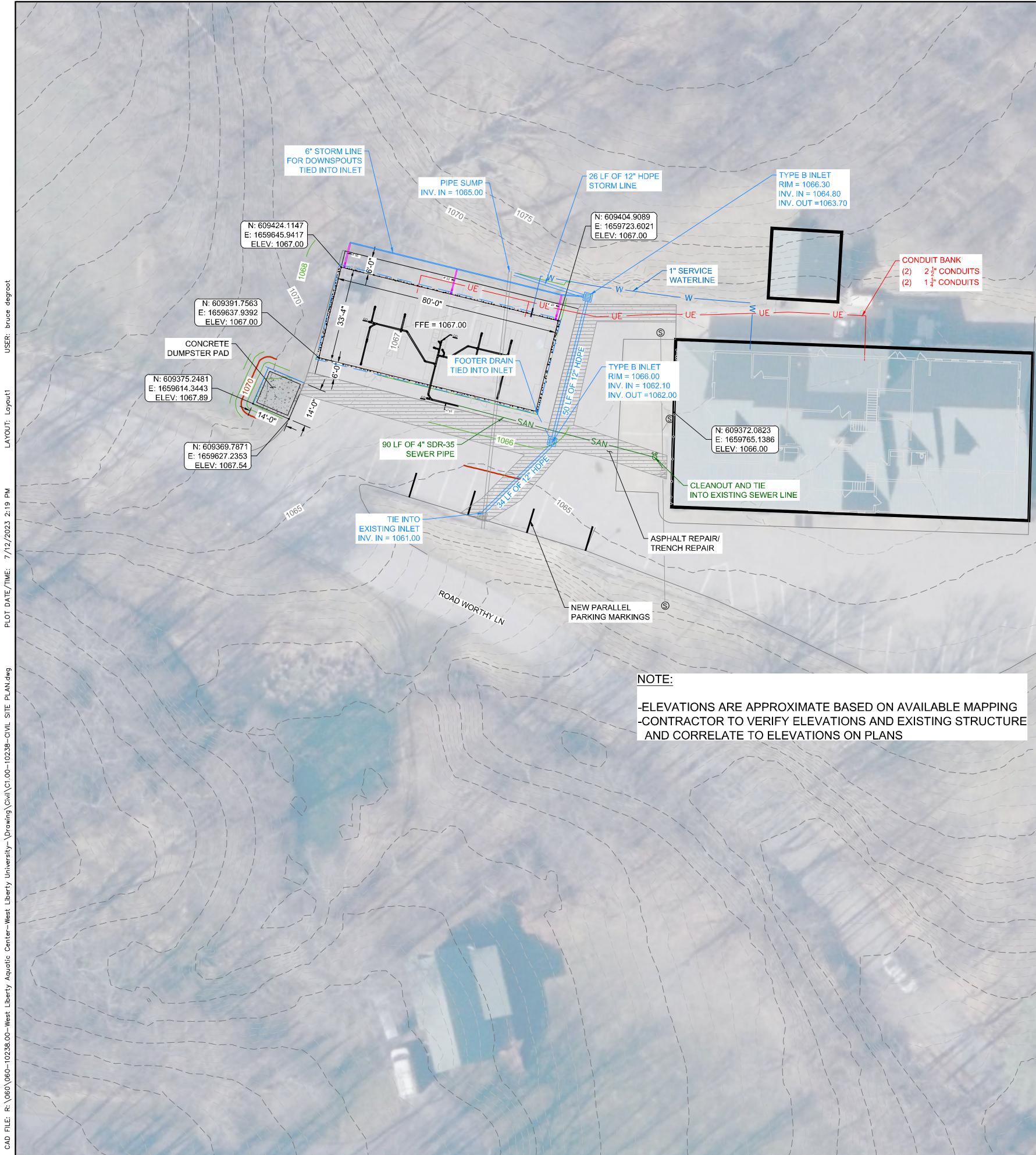
3.10 REPAIR AND PROTECTION

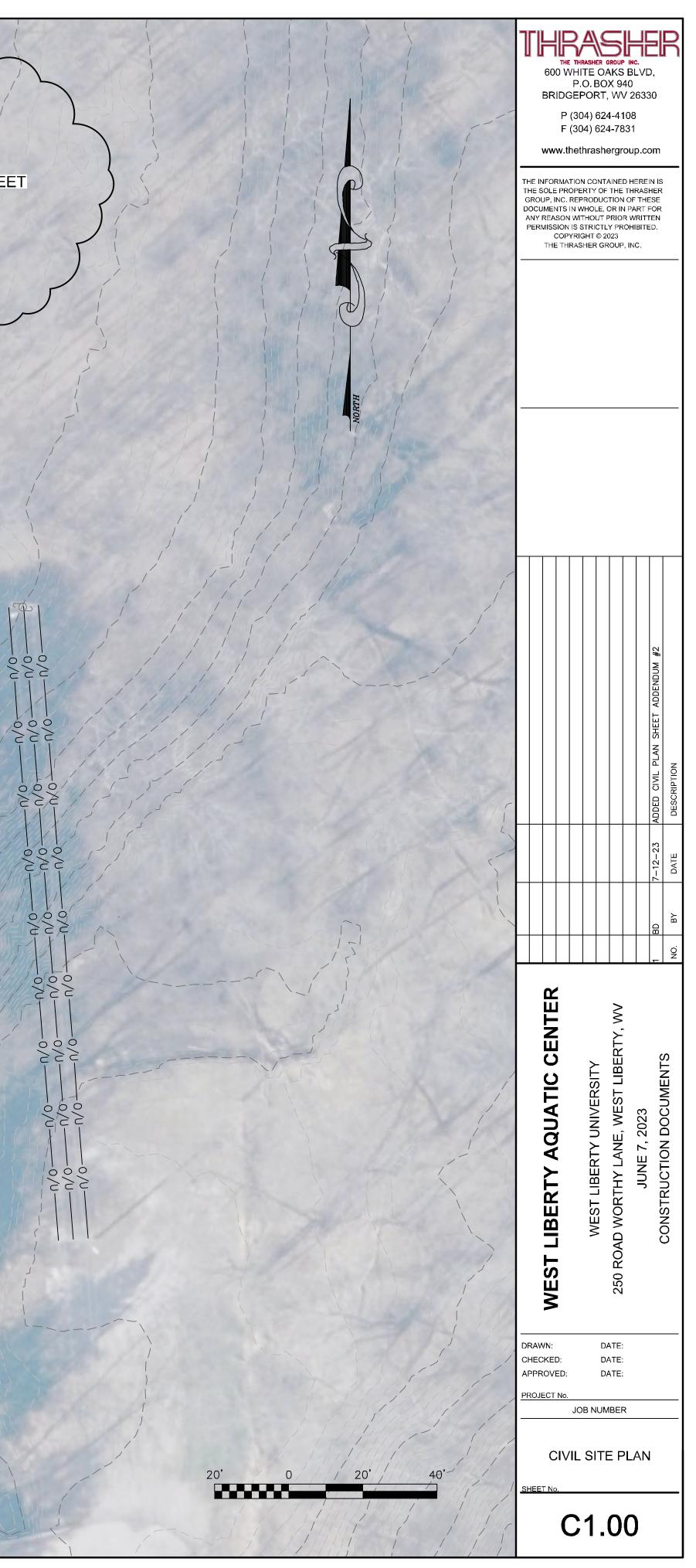

- A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.
- B. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.
- C. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

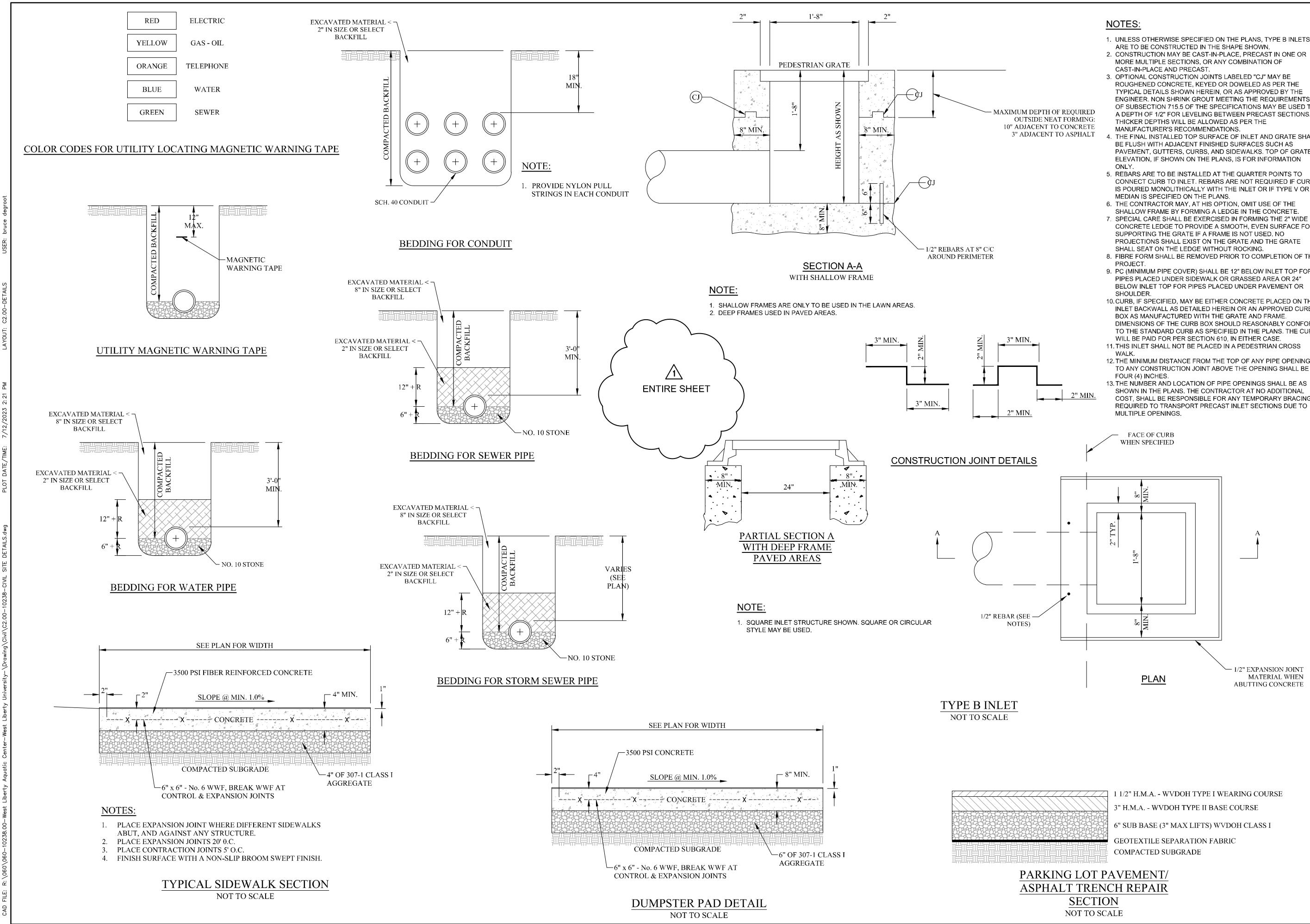
END OF SECTION 321313



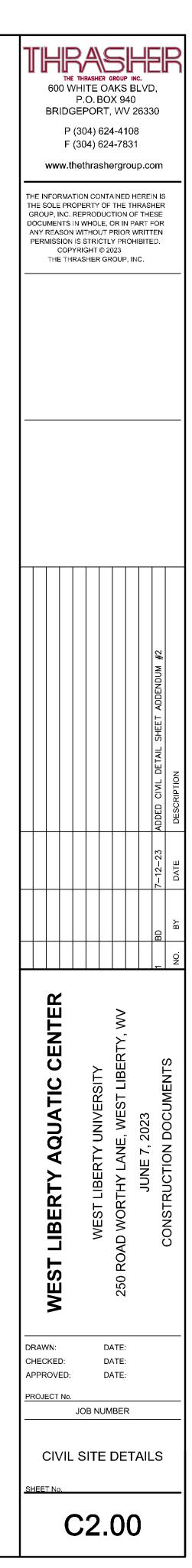

THE INFORMATION CONTAINED HEREIN	IS TH
SOLE PROPERTY OF THE THRASHER GRO	JUP
REPRODUCTION OF THESE DOCUMEN	ITS I
WHOLE OR IN PART, FOR ANY REASON W	/ПНС
PRIOR WRITTEN PERMISSION, IS STRI	CTLY






NOTE: ALL EXISITNG DOOR LOCATIONS, DIMENSIONS, AND ANY OTHER EXISTING ELEMENTS ARE TO BE VERIFIED IN THE FIELD. ANY DISCREPENCIES SHOULD BE BROUGHT TO THE ATTENTION OF THE ARCHITECT.

	CONSTRUCTION NOTES							
NOTE # DESCRIPTION								
	1	NEW TYPE 1 WALL PARTITION. PAINT BOTH SIDES. SEE PAINT PLAN ON SHEET A6.01						
	2 NEW DOOR, DOOR FRAME, AND DOOR HARDWARE. REFER TO SHEET A6.01							
		THE THRASHER GROUP INC.	WEST LIBERTY AQUATIC CENTER		ADDENDUM REFERENCE / NUMBER ADD. #2 A1.01R			
		600 WHITE OAKS BOULEVARD, BRIDGEPORT, WV 26330 PHONE: (304)624-4108 FAX: (304)624-7831	DRAWN: CFT	CHECKED: CB	APPROVED: TTG	ISSUED DATE: 07/12/23	PROJECT No. 060-10238	


ENTIRE SHEET

- 1. UNLESS OTHERWISE SPECIFIED ON THE PLANS, TYPE B INLETS
- 2. CONSTRUCTION MAY BE CAST-IN-PLACE, PRECAST IN ONE OR
- ROUGHENED CONCRETE, KEYED OR DOWELED AS PER THE TYPICAL DETAILS SHOWN HEREIN, OR AS APPROVED BY THE ENGINEER. NON SHRINK GROUT MEETING THE REQUIREMENTS OF SUBSECTION 715.5 OF THE SPECIFICATIONS MAY BE USED TO A DEPTH OF 1/2" FOR LEVELING BETWEEN PRECAST SECTIONS.
- 4. THE FINAL INSTALLED TOP SURFACE OF INLET AND GRATE SHALL BE FLUSH WITH ADJACENT FINISHED SURFACES SUCH AS PAVEMENT, GUTTERS, CURBS, AND SIDEWALKS. TOP OF GRATE ELEVATION, IF SHOWN ON THE PLANS, IS FOR INFORMATION
- 5. REBARS ARE TO BE INSTALLED AT THE QUARTER POINTS TO CONNECT CURB TO INLET. REBARS ARE NOT REQUIRED IF CURB IS POURED MONOLITHICALLY WITH THE INLET OR IF TYPE V OR VI
- SHALLOW FRAME BY FORMING A LEDGE IN THE CONCRETE. 7. SPECIAL CARE SHALL BE EXERCISED IN FORMING THE 2" WIDE
- CONCRETE LEDGE TO PROVIDE A SMOOTH, EVEN SURFACE FOR SUPPORTING THE GRATE IF A FRAME IS NOT USED. NO PROJECTIONS SHALL EXIST ON THE GRATE AND THE GRATE
- 8. FIBRE FORM SHALL BE REMOVED PRIOR TO COMPLETION OF THE
- 9. PC (MINIMUM PIPE COVER) SHALL BE 12" BELOW INLET TOP FOR PIPES PLACED UNDER SIDEWALK OR GRASSED AREA OR 24" BELOW INLET TOP FOR PIPES PLACED UNDER PAVEMENT OR
- 10. CURB, IF SPECIFIED, MAY BE EITHER CONCRETE PLACED ON THE INLET BACKWALL AS DETAILED HEREIN OR AN APPROVED CURB BOX AS MANUFACTURED WITH THE GRATE AND FRAME. DIMENSIONS OF THE CURB BOX SHOULD REASONABLY CONFORM TO THE STANDARD CURB AS SPECIFIED IN THE PLANS. THE CURB
- 12. THE MINIMUM DISTANCE FROM THE TOP OF ANY PIPE OPENING
- TO ANY CONSTRUCTION JOINT ABOVE THE OPENING SHALL BE
- SHOWN IN THE PLANS. THE CONTRACTOR AT NO ADDITIONAL COST, SHALL BE RESPONSIBLE FOR ANY TEMPORARY BRACING REQUIRED TO TRANSPORT PRECAST INLET SECTIONS DUE TO

/ /	_	/ /		7
\square	\sum	$\overline{\ }$	\square	
æ	258	स्र	202	
		R		
		8	ġġ	
				Ē

